
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 282 (2005) 125–149
0022-460X/$ -

doi:10.1016/j.

�Correspon
Road, Hudde

E-mail add
www.elsevier.com/locate/jsvi
Responses of infinite periodic structures to moving or
stationary harmonic loads

X. Sheng�, C.J.C. Jones, D.J. Thompson

University of Southampton, Highfield, Southampton SO17 1BJ, England, UK

Received 26 August 2003; accepted 16 February 2004

Available online 14 October 2004
Abstract

Formulae are derived for the computation of the response of periodically supported structures
subject to a moving or stationary harmonic load. They are expressed in terms of an integral
over the wavenumber in the longitudinal direction. The structures may be described using either
a multiple-beam model, or more generally, a two-and-half-dimensional finite-element model. The
supports, described by a receptance matrix, may have arbitrary degrees of freedom, either translational
or rotational. Equations for free vibration propagation constants are yielded straightforwardly. Results are
produced for a conventional ballasted track, showing the effects of the load speed and the modelling of the
supports.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of infinite periodic structures has been studied extensively in the past 30 years with
the focus mainly on free vibration propagation and forced vibration induced by stationary
harmonic loads [1]. The stationary forced vibration model has been heavily employed to model
railway tracks in the study of rolling noise [2] and other wheel/rail interaction problems [3]. It is
see front matter r 2004 Elsevier Ltd. All rights reserved.
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found that the direct receptances of the rail above a sleeper and at mid-span are greatly different
at frequencies close to the so-called pinned–pinned frequency, which for modern
ballasted tracks, is about 1000Hz. The pinned–pinned frequency occurs due to the discrete
supports provided to the rails by identically spaced sleepers. It is a resonance frequency
at mid-span while above a sleeper it is an anti-resonance frequency. No pinned–pinned
frequency exists if a ‘continuous support model’ is used. However, it is not clear what the
effect is of the load speed on the pinned–pinned phenomena. It is also not clear if the
load speed reduces or enhances the difference between the ‘discrete support model’ and
the ‘continuous support model’. To answer these questions, and for other applications such
as rail roughness growth, the forced vibration of a track due to a moving excitation must be
investigated.
Vibration of an infinite periodic beam subject to a moving harmonic load has been investigated

in Ref. [4]. In this study, the author considered a single segment only by using boundary
conditions derived according to the Euler beam theory. It must be acknowledged that the
mathematical treatments used in this reference are very idea-inspirational. Nordborg [5] also used
an Euler beam model to represent a moving load on a periodically supported rail. However, in the
calculation of the varying stiffness of the track, the author sets x ¼ ct (where c is the speed of the
moving wheel) in the receptance, apðx;oÞ; of the rail at the loading point, x, due to a unit
stationary harmonic load of frequency o; and then inverses the receptance to give the time-
dependent stiffness of the track. This means to give the varying track stiffness has also been used
by other researchers. For high-frequency vibration of a periodic structure like a track, it may be
inappropriate to model the structure as a single beam, especially for lateral vibration of the rail
[6–8], and therefore the formulae derived in Refs. [4,5] are not applicable. An alternative must be
developed.
In this paper a more general, wavenumber-based approach is proposed to study the

response of an infinite periodic structure to moving and stationary harmonic loads. In this
approach the periodically supported structure is represented as either a multiple-beam
model, or more generally, a two-and-half-dimensional (2.5D) finite-element model [9,10]. The
2.5D FEM requires the structure to be homogeneous in the longitudinal direction but
its cross-section can be arbitrarily shaped. Although the approach developed in this paper
can be applied to any periodic structure subject to moving or stationary harmonic loads, it is
intended here to identify the effects of the load speed on the dynamics of conventional railway
tracks and on the difference between the ‘discrete support model’ and the ‘continuous support
model’.
2. Differential equation of a periodic structure

Suppose an elastic body is infinitely long in the longitudinal (x-) direction and its cross-sections
normal to the x-axis are invariant with x. A unique discretization is made for every cross-section,
and nodal lines parallel to the x-axis are formed by nodes in a cross-section and corresponding
counterparts in other cross-sections. The displacements of the n nodes on the x cross-section are
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denoted by a 3n vector

fqðx; tÞg ¼ ðu1; v1;w1; . . . ; un; vn;wnÞ
T (1)

where u; v;w are displacement components in the x-, y- and z-directions. According to the 2.5D
FEM [9,10], the differential equation of motion of the structure is given by

½M�f €qðx; tÞg þ ½K�0fqðx; tÞg þ ½K�1
q
qx

fqðx; tÞg 	 ½K�2
q2

qx2
fqðx; tÞg ¼ fF ðx; tÞg; (2)

where fF ðx; tÞg denotes the nodal force vector, in units N/m. In Eq. (2), ½M�; ½K�0 and ½K�2 are
3n 
 3n symmetric matrices, and ½K�1 is an anti-symmetric matrix. Further, ½M� and both the real
and imaginary parts of ½K�2 are positive definite and both the real and imaginary parts of ½K�0 are
non-negative. As shown in Section 5, the dynamics of a single or a multiple Timoshenko beam
model can also be described by Eq. (2), except that the degrees of freedom of each beam at x

consist of a translation and rotation(s).
It is further assumed that at every length l in the x-direction, a support having arbitrary

degrees of freedom is connected to the elastic body. All the supports are assumed to be
identical, and therefore a periodic structure is formed. The supports may produce not only
point forces to part of the nodes, but also torques in planes containing a nodal line. The point
forces produced by the jth support at x ¼ jl are denoted by a force vector fFjðtÞg containing Np

components and the torques by a torque vector fMjðtÞg consisting Nt components. This torque
vector may be represented by two force vectors, fMjðtÞg=Dx and 	fMjðtÞg=Dx; applied at
two cross-sections separated by a distance Dx : x ¼ jl þ Dx and x ¼ jl (note: the components
corresponding to x must be zero). Thus the nodal force vector provided by the supports is
given by

fFcðx; tÞg ¼
X1

j¼	1

dðx 	 jlÞ½T�pfFjðtÞg þ
1

Dx

X1
j¼	1

ðdðx 	 jl 	 DxÞ 	 dðx 	 jlÞÞ½T�tfMjðtÞg; (3)

where dð�Þ is the delta-function, [T]p is a matrix of order 3n 
 Np; Npp3n; with elements being
either unit or zero and such that ½T�Tp ½T�p is a unit matrix of Np 
 Np: If the jth element of fFjðtÞg

acts at the ith degree of freedom of the elastic body, then Tpði; jÞ ¼ 1; otherwise Tpði; jÞ ¼ 0: ½T�t is
similar to ½T�p but is of order 3n 
 Nt; where Ntp3n: The connection between the elastic body and
each of the supports requires that

½T�Tp fqðkl; tÞg  	LpðfFkðtÞg; fMkðtÞgÞ; k ¼ 	1; . . . ; 0; . . . ;1; (4a)

½T�Tt
q
qx

fqðkl; tÞg  	LtðfFkðtÞg; fMkðtÞgÞ; k ¼ 	1; . . . ; 0; . . . ;1; (4b)

where the operators Lp and Lt describe the dynamical responses of the support. The minus sign
before the operators indicates that fFkðtÞg is opposite in direction to the positive displacement of
the support.
The externally applied loads are assumed to be harmonic with radian frequency O and moving

in the x-direction at speed c. At t ¼ 0; the loads are applied at the x0 cross-section. The
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corresponding nodal force vector is given by

fFeðx; tÞg ¼ dðx 	 x0 	 ctÞfP0ge
iOt; (5)

where fP0g 2 C3n denotes the amplitude vector of the loads. The case of stationary excitation
results if c ¼ 0: Substitution of Eqs. (3) and (5) into Eq. (2) yields

½M�f €qðx; tÞg þ ½K�0fqðx; tÞg þ ½K�1
q
qx

fqðx; tÞg 	 ½K�2
q2

qx2
fqðx; tÞg ¼ fFeðx; tÞg þ fFcðx; tÞg: (6)
3. Solution for the periodic structure subject to moving harmonic loads

As shown in Eq. (6), the excitations consist of two parts. Therefore the nodal displacement
vector fqðx; tÞg may also be divided into two parts, i.e.,

fqðx; tÞg ¼ fqeðx; tÞg þ fqcðx; tÞg; (7)

where fqeðx; tÞg is due to the externally applied loads and satisfies

½M�f €qeðx; tÞg þ ½K�0fqeðx; tÞg þ ½K�1
q
qx

qeðx; tÞg 	 ½K�2
q2

qx2
fqeðx; tÞg

¼ fFeðx; tÞg ¼ dðx 	 x0 	 ctÞfP0ge
iOt ð8Þ

and fqcðx; tÞg; generated by the supports, satisfies

½M�f €qcðx; tÞg þ ½K�0fqcðx; tÞg þ ½K�1
q
qx

fqcðx; tÞg 	 ½K�2
q2

qx2
fqcðx; tÞg ¼ fFcðx; tÞg

¼
X1

j¼	1

dðx 	 jlÞ½T�pfFjðtÞg þ
1

Dx

X1
j¼	1

dðx 	 jl 	 DxÞ 	 dðx 	 jlÞð Þ½T�tfMjðtÞg: ð9Þ
3.1. Solution for fqeðx; tÞg

The solution of Eq. (8) for fqeðx; tÞg is described in Ref. [9], and may be expressed as

fqeðx; tÞg ¼ ½Qeðx 	 x0 	 ctÞ�fP0ge
iOt; (10)

where, by denoting

o ¼ O	 bc; (11)

½Dðb;oÞ� ¼ 	o2½M� þ ½K�0 þ ib½K�1 þ b2½K�2; (12)

½ ~QeðbÞ� ¼ ½Dðb;oÞ�	1; (13)
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the 3n 
 3n matrix ½QeðxÞ� is determined by performing an inverse Fourier transform for ½ ~QeðbÞ�; i.e.,

½QeðxÞ� ¼
1

2p

Z 1

	1

½ ~QeðbÞ�e
ibx db; (14)

where i ¼
ffiffiffiffiffiffiffi
	1

p
; b is the wavenumber in the x-direction in units rad/m. Eq. (10) shows that fqeðx; tÞg is

harmonic if x0 ¼ x 	 x0 	 ct is fixed (i.e. observed from the moving loads) and the frequency is
identical to that of the excitation. For stationary loads where c ¼ 0; ½QeðxÞ� can be expressed
analytically in terms of the roots (for b) of detð½Dðb;oÞ�Þ: It can be shown that the Fourier transform
of Eq. (10) with respect to time t (that is the displacement spectrum) is given by

fq̂eðx; f Þg ¼

Z 1

	1

fqeðx; tÞge
	i2pft dt ¼

1

c
eib

�
ðx	x0Þ½ ~Qeðb

�
Þ�fP0g; (15)

where

b� ¼ ðO	 2pf Þ=c; ½ ~Qeðb
�
Þ� ¼ ½Dðb�; 2pf Þ�	1: (16)

3.2. Solution for fqcðx; tÞg

To solve Eq. (9), the Fourier transform with respect to x (from x to wavenumber b) is
performed

½M�f €̄qcðb; tÞg þ ½K�0fq̄cðb; tÞg þ ib½K�1fq̄cðb; tÞg þ b2½K�2fq̄cðb; tÞg

¼
X1

j¼	1

½T�pfFjðtÞge
	ibjl þ

X1
j¼	1

½T�tfMjðtÞg
1

Dx
ðe	ibðjlþDxÞ 	 e	ibjlÞ

¼
X1

j¼	1

½T�pfFjðtÞge
	ibjl þ

X1
j¼	1

½T�tfMjðtÞg
q
qx

e	ibx

����
x¼jl

¼
X1

j¼	1

½T�pfFjðtÞge
	ibjl 	 ib

X1
j¼	1

½T�tfMjðtÞge
	ibjl : ð17Þ

For this equation, the Fourier transform is further performed but with respect to time t:

ð	ð2pf Þ2½M� þ ½K�0 þ ib½K�1 þ b2½K�2Þf ^̄qcðb; f Þg

¼
X1

j¼	1

½T�pfF̂ jðf Þge
	ibjl 	 ib

X1
j¼	1

½T�tfM̂jðf Þge
	ibjl ; ð18Þ

where

fF̂ jðf Þg ¼

Z 1

	1

fFjðtÞge
	i2pft dt; fM̂jðf Þg ¼

Z 1

	1

fMjðtÞge
	i2pft dt:

From Eq. (18)

f ^̄qcðb; f Þg ¼ ½Dðb; 2pf Þ�	1
X1

j¼	1

ð½T�pfF̂ jðf Þg 	 ib½T�tfM̂jðf ÞgÞe
	ibjl ; (19)

where matrix [D] is defined by Eq. (12).
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Due to the regular repetition of the supports connected to the elastic body and the nature of the
excitation, the constraint force and torque vectors are identical apart from a time lag,

Fj t þ
jl

c

� �� �
¼ fF0ðtÞge

iOjl=c; j ¼ 	1; . . . ; 0; . . . ;1; (20a)

Mj t þ
jl

c

� �� �
¼ fM0ðtÞge

iOjl=c; j ¼ 	1; . . . ; 0; . . . ;1; (20b)

where fF0ðtÞg and fM0ðtÞg are the supporting force and torque vectors at the 0th support where
x ¼ 0: Thus the Fourier transforms of them with respect to t are given by

fF̂ jðf Þg ¼ fF̂0ðf Þge
iðO	2pf Þjl=c ¼ fF̂0ðf Þge

ib�jl ; (21a)

fM̂jðf Þg ¼ fM̂0ðf Þge
iðO	2pf Þjl=c ¼ fM̂0ðf Þge

ib�jl : (21b)

Inserting Eqs. (21a) and (21b) into Eq. (19), gives

f ^̄qcðb; f Þg ¼ ½Dðb; 2pf Þ�	1ð½T�pfF̂0ðf Þg 	 ib½T�tfM̂0ðf ÞgÞ
X1

j¼	1

e	iðb	b�Þjl ; (22)

It can be shown that

X1
j¼	1

e	iðb	b�Þjl ¼ 2p
X1

j¼	1

dððb� 	 bÞl 	 2pjÞ: (23)

Thus

f ^̄qcðb; f Þg ¼ 2p½Dðb; 2pf Þ�	1ð½T�pfF̂0ðf Þg 	 ib½T�tfM̂0ðf ÞgÞ
X1

j¼	1

dððb� 	 bÞl 	 2pjÞ: (24)

The inverse Fourier transform of Eq. (24) with respect to b therefore is given by

fq̂cðx; f Þg ¼
1

2p

Z 1

	1

f ^̄qcðb; f Þge
ibx db

¼
1

l

X1
j¼	1

½Dðbj; 2pf Þ�	1ð½T�pfF̂0ðf Þg 	 ibj½T�tfM̂0ðf ÞgÞe
ibjx; ð25Þ

where

bj ¼ b� 	
2pj

l
¼

O	 2pf

c
	

2pj

l
(26)

Now from Eq. (4) it follows that

½T�Tp fq̂cðkl; f Þg ¼ 	½T�Tp fq̂eðkl; f Þg 	 ½Hðf Þ�11fF̂kðf Þg 	 ½Hðf Þ�12fM̂kðf Þg;

½T�Tt
q
qx

fq̂cðkl; f Þg ¼ 	½T�Tt
q
qx

fq̂eðkl; f Þg 	 ½Hðf Þ�21fF̂kðf Þg 	 ½Hðf Þ�22fM̂kðf Þg
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and according to Eq. (21a), (21b),

½T�Tp fq̂cðkl; f Þg ¼ 	½T�Tp fq̂eðkl; f Þg 	 ½Hðf Þ�11fF̂0ðf Þge
ib�kl 	 ½Hðf Þ�12fM̂0ðf Þge

ib�kl ; (27a)

½T�Tt
q
qx

fq̂cðkl; f Þg ¼ 	½T�Tt
q
qx

fq̂eðkl; f Þg 	 ½Hðf Þ�21fF̂0ðf Þge
ib�kl 	 ½Hðf Þ�22fM̂0ðf Þge

ib�kl ; (27b)

where

½Hðf Þ� ¼
½Hðf Þ�11 ½Hðf Þ�12

½Hðf Þ�21 ½Hðf Þ�22

	 

(28)

is the receptance matrix of order ðNp þ NtÞ 
 ðNp þ NtÞ of the supports found by Fourier
transforming the operators in Eq. (4). ½Hðf Þ� ¼ 0 if the supports are rigid. Eq. (27), combined with
Eqs. (15) and (25), gives

1

l

X1
j¼	1

½T�Tp ½Dðbj; 2pf Þ�	1½T�pe
ibjklfF̂0ðf Þg

	
1

l

X1
j¼	1

ðibjÞ½T�
T
p ½Dðbj; 2pf Þ�	1½T�te

ibjklfM̂0ðf Þg

þ ½Hðf Þ�11fF̂0ðf Þge
ib�kl þ ½Hðf Þ�12fM̂0ðf Þge

ib�kl

¼ 	
1

c
eib

�
ðkl	x0Þ½T�Tp ½

~Qeðb
�
Þ�fP0g; ð29aÞ

1

l

X1
j¼	1

ðibjÞ½T�
T
t ½Dðbj; 2pf Þ�	1½T�pe

ibjklfF̂0ðf Þg

	
1

l

X1
j¼	1

ðibjÞ
2
½T�Tt ½Dðbj; 2pf Þ�	1½T�te

ibjklfM̂0ðf Þg

þ ½Hðf Þ�21fF̂0ðf Þge
ib�kl þ ½Hðf Þ�22fM̂0ðf Þge

ib�kl

¼ 	
ib�

c
eib

�
ðkl	x0Þ½T�Tt ½

~Qeðb
�
Þ�fP0g: ð29bÞ

Since eibjkl ¼ eiðb
�
	2pj=lÞkl ¼ eib

�kl ; Eq. (29) is equivalent to

½Aðf Þ�
fF̂0ðf Þg

fM̂0ðf Þg

( )
¼ 	

1

c
e	ib�x0 ½Bðb�Þ�½ ~Qeðb

�
Þ�fP0g; (30)
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where

½Aðf Þ� ¼
½Aðf Þ�11 ½Aðf Þ�12

½Aðf Þ�21 ½Aðf Þ�22

	 

; (31a)

½Aðf Þ�11 ¼ ½T�Tp
1

l

X1
j¼	1

½Dðbj; 2pf Þ�	1

 !
½T�p þ ½Hðf Þ�11; (31b)

½Aðf Þ�12 ¼ 	½T�Tp
1

l

X1
j¼	1

ðibjÞ½Dðbj; 2pf Þ�	1

 !
½T�t þ ½Hðf Þ�12; (31c)

½Aðf Þ�21 ¼ ½T�Tt
1

l

X1
j¼	1

ðibjÞ½Dðbj; 2pf Þ�	1

 !
½T�p þ ½Hðf Þ�21; (31d)

½Aðf Þ�22 ¼ 	½T�Tt
1

l

X1
j¼	1

ðibjÞ
2
½Dðbj; 2pf Þ�	1

 !
½T�t þ ½Hðf Þ�22; (31e)

½Bðb�Þ� ¼
½T�Tp

ib�½T�Tt

" #
: (32)

Thus fF̂0ðf Þg and fM̂0ðf Þg can be determined as

fF̂0ðf Þg

fM̂0ðf Þg

( )
¼ 	

1

c
e	ib�x0 ½Aðf Þ�	1½Bðb�Þ�½ ~Qeðb

�
Þ�fP0g: (33)

Inserting Eq. (16) into Eq. (33) yields the spectrum of the supporting force and torque vector at
the 0th support

fF̂0ðf Þg

fM̂0ðf Þg

( )
¼ 	

1

c
e	ib�x0 ½Aðf Þ�	1½Bðb�Þ�½Dðb�; 2pf Þ�	1fP0g (34)

in which the spectral frequency f and wavenumber b� are related through Eq. (16).
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The displacement vector fqcðx; tÞg is determined by performing an inverse Fourier transform of
Eq. (25). That is

fqcðx; tÞg ¼

Z 1

	1

fq̂cðx; f Þge
i2pft df

¼
1

l

X1
j¼	1

Z 1

	1

½Dðbj; 2pf Þ�	1½½T�p 	 ibj½T�t�
fF̂0ðf Þg

fM̂0ðf Þg

( )
eibjxei2pft df

¼
1

l

X1
j¼	1

Z 1

	1

½Dðbj; 2pf Þ�	1½BðbjÞ�
T

fF̂0ðf Þg

fM̂0ðf Þg

( )
eibjxei2pft df : ð35Þ

From Eq. (35) it can be seen that

fqcðx þ l; t þ l=cÞg ¼ fqcðx; tÞge
iOl=c (36)

Eq. (10) also indicates that fqeðx þ l; t þ l=cÞg ¼ fqeðx; tÞge
iOl=c: In other words, the displacement

of the periodic structure due to the defined excitation satisfies

fqðx þ l; t þ l=cÞg ¼ fqðx; tÞgeiOl=c: (37)

3.3. Solution expressed in terms of wavenumber

The solutions derived above (Eq. (35)) are expressed in terms of an infinite integral with respect
to the spectral frequency f. It may be more convenient to express them in terms of the
wavenumber b in the x-direction. This is because even at a very high frequency, the propagating
wavenumber in a railway track is small in magnitude (e.g. from Ref. [10], for a standard UIC 60
rail it is less than 25 rad/m at 5000Hz). This treatment is especially necessary for stationary loads
with c ¼ 0; since it makes c disappear from the denominator in the formulae. The transform from
spectral frequency f to wavenumber b is realised though Eq. (16) (note: b� has been replaced by b):

2pf ¼ O	 bc ¼ o; df ¼ 	
c

2p
db; (38)

then Eqs. (31) and (32) become

½AðbÞ� ¼
½AðbÞ�11 ½AðbÞ�12
½AðbÞ�21 ½AðbÞ�22

	 

; (39a)

½AðbÞ�11 ¼ ½T�Tp
1

l

X1
j¼	1

½Dðbj;oÞ�
	1

 !
½T�p þ ½HðoÞ�11; (39b)

½AðbÞ�12 ¼ 	½T�Tp
1

l

X1
j¼	1

ðibjÞ½Dðbj;oÞ�
	1

 !
½T�t þ ½HðoÞ�12; (39c)

½AðbÞ�21 ¼ ½T�Tt
1

l

X1
j¼	1

ðibjÞ½Dðbj;oÞ�
	1

 !
½T�p þ ½HðoÞ�21; (39d)
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½AðbÞ�22 ¼ 	½T�Tt
1

l

X1
j¼	1

ðibjÞ
2
½Dðbj;oÞ�

	1

 !
½T�t þ ½HðoÞ�22; (39e)

½BðbÞ� ¼
½T�Tp

ib½T�Tt

" #
; (40)

where according to Eq. (26), bj ¼ b	 2pj=l: From Eqs. (34) and (35)

fF0ðtÞg

fM0ðtÞg

� �
¼ 	

1

2p

Z 1

	1

e	ibx0 ½AðbÞ�	1½BðbÞ�½Dðb;oÞ�	1e	ibct db
� �

fP0ge
iOt; (41)

fqðx; tÞg ¼ fqeðx; tÞg þ fqcðx; tÞg

¼ ½Qeðx 	 x0 	 ctÞ�fP0ge
iOt

þ
X1

j¼	1

	
1

2pl
e	i2pjx=l

Z 1

	1

½Dðbj;oÞ�
	1½BðbjÞ�

T½AðbÞ�	1½BðbÞ�½Dðb;oÞ�	1eibðx	x0	ctÞ db
� �" #


fP0ge
iOt; ð42Þ

where ½QeðxÞ� is given by Eq. (14).

3.4. Displacements observed from the moving loads

If observation is made from a reference frame moving together with the loads, then the
displacements of the structure are given by Eq. (42) by setting x ¼ x0 þ x0 þ ct; i.e.,

fqðx0; tÞg ¼ ½Qeðx
0Þ�fP0ge

iOt

þ
X1

j¼	1

	
1

2pl
e	i2pjðx0þx0Þ=l

Z 1

	1

½Dðbj;oÞ�
	1½BðbjÞ�

T½AðbÞ�	1½BðbÞ�½Dðb;oÞ�	1eibx0

db
� �

e	i2pjct=l

" #


fP0ge
iOt;

i.e.,

fqðx0; tÞg ¼ ½Qeðx
0Þ� þ

X1
j¼	1

½aðx0Þ�je
	i2pjðx0þx0þctÞ=l

 !
fP0ge

iOt; (43)

where

½aðx0Þ�j ¼ 	
1

2pl

Z 1

	1

½Dðbj;oÞ�
	1½BðbjÞ�

T½AðbÞ�	1½BðbÞ�½Dðb;oÞ�	1eibx0

db: (44)

It can be seen from Eq. (43) that the term in the bracket (termed the amplitude which is the
displacement divided by the load) is a periodic function of time t with period equal to l=c: The
average of the amplitude over a period is given by ½Qeðx

0Þ� þ ½aðx0Þ�0: Therefore, the displacements
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are not purely harmonic. This feature may cause difficulties in dealing with wheel/track
interaction problems in the frequency domain, where harmonic responses are assumed for the
wheel and rail at the contact points for harmonic inputs. It can also be seen that at x0 ¼ 0; the
variation of the displacement amplitudes with time t varying over ½0; l=c� is equivalent to the
variation due to the initial loading position, x0; varying over ½0; l� at t ¼ 0:

3.5. Responses of the elastic body under equivalent continuous support

An equivalent continuously supported system is formed by evenly distributing the receptance of
the supports along each bay. This gives the receptance per unit length in the x-direction (actually
the displacement due to a unit force per unit length): l½HðoÞ�: The responses of such a structure are
obtained by considering the j ¼ 0 term only in Eqs. (39), (40) and (42). Thus,

½AðbÞ�11 ¼ ½T�Tp ½Dðb;oÞ�	1½T�p þ l½HðoÞ�11; (45a)

½AðbÞ�12 ¼ 	ib½T�Tp ½Dðb;oÞ�	1½T�t þ l½HðoÞ�12; (45b)

½AðbÞ�21 ¼ ib½T�Tt ½Dðb;oÞ�	1½T�p þ l½HðoÞ�21; (45c)

½AðbÞ�22 ¼ b2½T�Tt ½Dðb;oÞ�	1½T�t þ l½HðoÞ�22; (45d)

fqðx; tÞg ¼ ½Qeðx 	 x0 	 ctÞ�fP0ge
iOt

	
1

2p

Z 1

	1

½Dðb;oÞ�	1½BðbÞ�T½AðbÞ�	1½BðbÞ�½Dðb;oÞ�	1eibðx	x0	ctÞ db
� �

fP0ge
iOt: ð46Þ

Eq. (46) shows that, observed from the moving loads, the displacement is purely time-harmonic
everywhere. It should be noted that, the displacement amplitude from the continuous support
model is not equal to the average of the time-varying amplitude from the discrete support model,
although they may be close to each other in many cases.
4. Free vibration propagation

The formulae derived in Section 3.3 are applicable to the case of a stationary harmonic load
without any difficulty. It is shown by Eqs. (41) and (42) that the supporting forces/torques and
displacements of the elastic body are purely time-harmonic. It can be seen that matrix ½AðbÞ� in
Eq. (39) is a periodic function of b with period equal to 2p=l:
It is important to investigate the free vibration property of periodic structures. The free

vibration property is described by a propagation constant, �; such that fqðx þ l; tÞg ¼ fqðx; tÞgei�

[1]. Eq. (30) indicates that, for free vibration to exist ½Aðb;oÞ� must be a singular matrix, i.e.,

detð½Aðb;oÞ� ¼ 0; (47)

where, since o is independent of b (see Eq. (38)), matrix ½AðbÞ� in Eq. (39) has been denoted
alternatively by ½Aðb;oÞ�: For a root of Eq. (47), b̄ at given frequency o; the free vibration of the
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periodic structure takes the form of (see Eq. (42))

fqðx; tÞg ¼ fqcðx; tÞg ¼
X1

j¼	1

½Dðbj;oÞ�
	1½BðbjÞ�

Teiðb̄	2pj=lÞx

 !
ffgeiot; (48)

where bj ¼ b̄	 2pj=l; ffg is the eigenvector of matrix ½Aðb;oÞ� corresponding to b̄: Eq. (48) shows
that the free vibration is not a purely spatially harmonic wave, but it does indicate that fqðx þ

l; tÞg ¼ fqðx; tÞgeib̄l ; therefore the propagation constant is given by

� ¼ b̄l: (49)

Since ½Aðb;oÞ� is a periodic function of b with period equal to 2p=l; b̄� j2p=l ðj ¼ 1; 2; . . .Þ are also
roots of Eq. (47). However, insertion of them into Eq. (48) does not change the free vibration
wave.
5. Application to railway tracks

In this section, the approach presented above is applied to the study of railway track dynamics.
Ref. [10] calculated the dispersion curves up to 6000Hz for a free UIC60 rail using a 2.5D FEM
with 149 nodes (447 degrees of freedom) and 124 finite elements. However, for a conventional
track and for frequencies up to 3000Hz, the rail can be modelled as a single or multiple
Timoshenko beams with much fewer degrees of freedom, as shown in Refs. [6–8]. It is shown
below that the single- or multiple-beam models can also be described by Eq. (2), and therefore the
approach of this paper is totally applicable. A set of typical parameters for the track structure are
listed in Table 1. They, and those for lateral dynamics listed in Table 2, are from Refs. [6–8], with
the shear modulus being slightly adjusted. These parameters are for half the structure (i.e. a single
rail on half sleepers) and correspond to a track with concrete sleepers and moderately stiff rail
Table 1

Parameters for the vertical dynamics of a track

Density of the rail r ¼ 7850 kg=m3

Young’s modulus of the rail E ¼ 2:1
 1011 N=m2

Shear modulus of the rail G ¼ 0:81
 1011 N=m2

Loss factor of the rail ZR ¼ 0:01
Cross-sectional area of the rail A ¼ 7:69
 10	3 m2

Second moment of area of the rail cross-section I ¼ 30:55
 10	6 m4

Shear coefficient of the rail cross-section k ¼ 0:4
Vertical rail pad stiffness kPv ¼ 3:5
 108 N=m
Rail pad loss factor ZP ¼ 0:25
Mass of sleeper mS ¼ 162kg

Sleeper spacing l ¼ 0:6m
Vertical ballast stiffness kBv ¼ 50
 106 N=m
Loss factor of ballast ZB ¼ 1:0
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Table 2

Parameters for the lateral dynamics of a track

Height of the rail head hh ¼ 0:039m
Width of the rail head bh ¼ 0:073m
Cross-sectional area of the rail head Ah ¼ 2:847
 10	3 m2

Shear coefficient of the rail head kh ¼ 0:85
Second moment of area of the rail head Ih ¼ 1:264
 10	6 m4

Polar second moment of area of the rail head Ihp ¼ 1:625
 10	6 m4

Equivalent polar second moment of area of the rail head Jh ¼ 0:9549
 10	6 m4

Height of the rail foot hf ¼ 0:0175m
Width of the rail foot bf ¼ 0:15m
Cross-sectional area of the rail foot Af ¼ 2:625
 10	3 m2

Shear coefficient of the rail foot kf ¼ 0:85
Second moment of area of the rail foot I f ¼ 4:921
 10	6 m4

Polar second moment of area of the rail foot I fp ¼ 4:988
 10	6 m4

Equivalent polar second moment of area of the rail foot Jf ¼ 0:2471
 10	6 m4

Height of the rail web hw ¼ 0:114m
Width of the rail web bw ¼ 0:019m
Cross-sectional area of the rail web Aw ¼ 2:166
 10	3 m2

Second moment of area of the rail web Iw ¼ 0:5716
 10	6 m4

Lateral railpad stiffness kPl ¼ 49:98
 106 N=m
Lateral ballast stiffness kBl ¼ 79:98
 106 N=m
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pads. Damping is introduced for the track via complex stiffness with the imaginary part being the
stiffness times a loss factor.

5.1. Vertical dynamics using Timoshenko beam model

For the vertical dynamics of a railway track up to 3000Hz, the Timoshenko beam model can be
employed to model the rail. According to the Timoshenko beam theory, the differential equation
for the rail subject to a unit vertical moving harmonic load is given by

rA
q2w
qt2

	 kAG
q2w
qx2

þ kAG
qc
qx

¼ dðx 	 x0 	 ctÞeiOt þ
X1

j¼	1

FjðtÞdðx 	 jlÞ; (50)

rI
q2c
qt2

	 EI
q2c
qx2

	 kAG
qw

qx
þ kAGc ¼

X1
j¼	1

MjðtÞdðx 	 jlÞ; (51)

where w is the vertical displacement of the rail and c is the rotation angle of the cross-section due
to the bending moment only. FjðtÞ is the vertical supporting force produced by the jth support and
MjðtÞ is the torque produced by the jth support in the vertical plane. The longitudinal shear force
between the rail and sleeper is neglected. Comparison has been made between situations with and
without MjðtÞ; and it is found that the difference is negligible. The reason is that even at 3000Hz,
the wavelength in the rail modelled as a Timoshenko beam is about 0.62m, much longer than the
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width (0.25m) of a sleeper. Comparing Eqs. (50) and (51) with Eq. (8), it follows that

½M� ¼
rA 0

0 rI

" #
; ½K�0 ¼

0 0

0 kAG

" #
; ½K�1 ¼

0 kAG

	kAG 0

" #
;

½K�2 ¼
kAG 0

0 EI

" #
; fP0g ¼

1

0

( )
; ½T�p ¼

1 0

0 1

" #
; and fqg ¼

w

c

( )
:

The receptance matrix of the support including a railpad, a sleeper and the ballast, is
given by

½HðoÞ� ¼

kBv þ kPv 	 mSo2

kPv½kBv 	 mSo2�
0

0
12

b2SkPv

2
6664

3
7775; (52)

where kPv and kBv are complex stiffness of the railpad and ballast, mS is the sleeper mass, and
bS ¼ 0:25m is the width of the sleeper. The rotation of the sleeper is neglected.
As has been identified, when the load is moving the amplitude (which is the displacement

divided by the load) of the displacement of the loading point is not, due to the discrete supports,
constant but instead a periodic function of time. The variation of the displacement amplitude of
the loading point with time t varying over ½0; l=c� is equivalent to the variation due to the initial
loading position, x0; varying over ½0; l� at t ¼ 0: Figs. 1–3 show the amplitude/frequency relation
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Fig. 1. Vertical displacement amplitude at the loading point for stationary load. –––, continuous support model; – – –,

above sleeper; – � –, at the mid-span.



ARTICLE IN PRESS

101 102 103 104

10-11

10-10

10-9

10-8

Frequency (Hz)

A
m

pl
itu

de
 (

m
/N

) 

Fig. 2. Vertical displacement amplitude at the loading point for load speed=40m/s. –––, continuous support model;

– – –, above sleeper; – � –, at the mid-span.
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Fig. 3. Vertical displacement amplitude at the loading point for load speed=80m/s. –––, continuous support model;

– – –, above sleeper; – � –, at the mid-span.
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at t ¼ 0 of the loading point for two initial loading positions (at mid-span and above a sleeper)
and three load speeds (0, 40 and 80m/s). Also shown is the results produced from the continuous
support model (Eq. (46)). From these figures, it can be seen that:
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(1) The effect of the load speed on the response of the continuous support model is negligible
for the whole frequency range considered. However, for the discrete support model the load speed
does have an effect near the pinned–pinned frequency (about 1000Hz). The resonance and anti-
resonance at the pinned–pinned frequency for a stationary load has been revealed not only by
calculation as in Fig. 1, but also by measurement [11]. At mid-span, the load speed splits the peak
at the pinned–pinned frequency into two peaks. The heights of the two peaks decrease and the
frequency spacing between them increases as the load speed increases. On the other hand, for
the response above a sleeper, the depth of the dip at the pinned–pinned frequency is reduced by
the load speed.
(2) For frequencies less than 200Hz (termed here the low-frequency range), the continuous

support model gives almost the same results as the discrete support model, irrespective of the load
speed and loading position. In other words, the continuous support model for the vertical track
dynamics is appropriate for this frequency range, apart from a small modulation of the track
stiffness at the sleeper passing frequency. This finding confirms the track model used in ground
vibration modelling [12,13] in which the considered frequencies are less than 200Hz and the track
is described using the continuous support model.
(3) For higher frequencies, the dependence is clearly shown in these figures of the amplitude on

the loading position. In other words, for a given load frequency, the displacement amplitude of
the loading point fluctuates about an average value when the load moves within a sleeper bay. As
identified above, the frequency of the fluctuation is the sleeper-passing frequency which is 116Hz
at 250 km/h (69.4m/s). The fluctuation is obvious (can be 50% of the average) for frequencies
from 200 to 800Hz (the middle-frequency range) and huge for those close to the pinned–pinned
frequency (frequencies higher than 800Hz are termed the high-frequency range). Compared to
load frequencies within the high-frequency range, the sleeper-passing frequency is small (less than
1
8
) for possible train speeds. However, due to its huge fluctuation at the pinned–pinned frequency,
the amplitude within a period of variation of the load may still vary significantly. In the middle-

frequency range, the sleeper-passing frequency can be as high as half the load frequency and
therefore the amplitude within a period of variation of the load cannot be approximated as a
constant.
(4) The above observations indicate that, for vehicle/track interaction problems in which only

the vertical dynamics of the track needs to be considered, only in the low-frequency range can the
vehicles be regarded as stationary and are excited by a roughness strip passing between wheel and
rail at the train speed. In this frequency range, the continuous support track model can be used. In
the middle- and high-frequency ranges, improvements are desired to such a modelling approach. Of
course, for rolling noise problems, such a modelling approach would not introduce significant
errors if noise levels in dB are presented for 1

3
octave bands, as confirmed by measurements [14].

However, the load speed is important for short-pitch corrugation growth since the pinned–pinned
vibration plays a vital role in corrugation development [15].

5.2. Lateral dynamics using the multiple beam model

In Ref. [7], a multiple-beam model is proposed for the lateral vibration of a rail. In this model
the rail is divided into three parts each with a rectangular cross-section: the head (indicated by
subscript h) and the foot (indicated by subscript f) are represented by two infinite Timoshenko
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beams which can be subjected to both bending and torsion and the web (indicated by subscript w)
is replaced by an array of vertical beams along the rail which connect the head and foot. The
effects of the web twisting and bending in the rail direction are neglected. The geometric
properties of a rectangle are described by h, the height, b, the width, A, the cross-sectional area, I,
the second moment of area, J, the equivalent polar second moment of area, Ip; the polar second
moment of area and k; the shear coefficient. The geometric parameters for lateral vibration can be
evaluated from the height h and width b of a rectangle. The geometric parameters are listed in
Table 2.
At the top of the head, a unit moving (at speed c) lateral harmonic load of frequency O is

applied. The lateral displacement of a beam is denoted by u; the rotation angle of its cross-section
due to the bending moment only by c and the torsion angle of the beam by y: The differential
equation of the track is derived in Appendix A and given by

½M�
q2

qt2
fqðx; tÞg þ ½K�0fqðx; tÞg þ ½K�1

q
qx

fqðx; tÞg 	 ½K�2
q2

qx2
fqðx; tÞg

¼

dðx 	 x0 	 ctÞeiOt

0

hh

2
dðx 	 x0 	 ctÞeiOt

P1
j¼	1

VjðtÞdðx 	 jlÞ

P1
j¼	1

TjðtÞdðx 	 jlÞ

P1
j¼	1

MjðtÞ 	
hf

2
VjðtÞ

� �
dðx 	 jlÞ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

; ð53Þ

where

fqðx; tÞg ¼ ðuh;ch; yh; uf ;cf ; yf Þ
T; (54)

VjðtÞ; TjðtÞ and MjðtÞ are the lateral force, bending torque and torsion torque exerted on the rail
foot by the jth support.
Comparison of this with Eq. (8) indicates that

fP0g ¼ 1; 0;
hh

2
; 0; 0; 0

� �T

; (55)

fFjðtÞg ¼ VjðtÞ;TjðtÞ;MjðtÞ 	
hf

2
VjðtÞ

� �T

: (56)

The matrix ½T�p in Eq. (9) is of order 6
 3 and only three elements, Tpð4; 1Þ; Tpð5; 2Þ and Tpð6; 3Þ
are non-zero but instead, Tpð4; 1Þ ¼ Tpð5; 2Þ ¼ Tpð6; 3Þ ¼ 1:
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The receptance matrix of the support in accordance with the supporting force vector defined in
Eq. (56) is of order 3
 3, and is given by

½HðoÞ� ¼

kPl þ kBl 	 mso2

kPlðkBl 	 mso2Þ
þ

3h2f

b2
f kPv

0
6hf

b2
f kPv

0
12

b2
SkPl

0

6hf

b2f kPv

0
12

b2
f kPv

2
6666666664

3
7777777775
: (57)

To derive this receptance matrix it has been assumed that the sleeper vibrates only in the lateral
direction.
Figs. 4–6 present the lateral displacement amplitude of the loading point at t ¼ 0 for two initial

loading positions (at mid-span and above a sleeper) and three load speeds (0, 40 and 80m/s), as
well as the results from the continuous support model (Eq. (46)). For the case of a stationary load
(Fig. 4), discussions have been given in Ref. [8]. As for the track vertical dynamics, the results here
show a significant effect of the load speed on the pinned–pinned vibration which occurs at about
500Hz: in addition to splitting the peak into two, the load speed greatly reduces the peak and dip
at this frequency. For frequencies below 250Hz, the response at mid-span and that above a
sleeper are close to each other, implying that in this frequency range, the amplitude of the loading
point can be regarded as a constant as the load passes a sleeper bay. Near the pinned-pinned
frequency however, the amplitude at the loading point changes significantly as the load passes a
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Fig. 4. Lateral displacement amplitude at the loading point for stationary load. –––, continuous support model; – – –,

above sleeper; – � –, at the mid-span.
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Fig. 5. Lateral displacement amplitude at the loading point for load speed=40m/s. –––, continuous support model;

– – –, above sleeper; – � –, at the mid-span.
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Fig. 6. Lateral displacement amplitude at the loading point for load speed=80m/s. –––, continuous support model;

– – –, above sleeper; – � –, at the mid-span.
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sleeper bay. If the load speed is very high (e.g. 83m/s that is 300 km/h), the sleeper passing
frequency (139Hz) is not very small compared with the pinned-pinned frequency. In this case, the
amplitude of the loading point changes significantly within one cycle of excitation.
A remarkable observation from these figures is that for frequencies below about 200Hz, the

results from the continuous support model are much lower than those from the discrete support
model. This observation can also be made by comparing Fig. 7 in Ref. [6] and Fig. 1 in Ref. [7] for
the case of stationary load. In other words, the continuous support model is inappropriate for
lateral track vibration, even for low frequencies.
6. Conclusion

In this paper, a general, wavenumber-based, approach is proposed for the computation of the
response of periodically supported structures subject to a moving or stationary harmonic load.
The structures can be described using either a multiple-beam model or a two-and-half-
dimensional finite element model if the beam model is inappropriate. The supports may have
arbitrary degrees of freedom, either translational or rotational. Equations for free vibration
propagation constants, which have been previously derived for simple periodic structures, are
yielded straightforwardly from this approach.
The amplitude (displacement divided by load) of the displacement of a periodic structure

subject to a moving harmonic load is not constant but, if observed from the moving load, a
periodic function of time t with the period equal to the bay-passing time. The Fourier coefficients
of this periodic function are expressed explicitly in terms of an integral over the wavenumber in
the longitudinal direction.
An equivalent continuous support model is introduced by evenly distributing the receptance of

the supports along each bay. Observed from the moving load, the amplitude of the displacement is
constant, i.e., the displacement of the continuous support model is purely time-harmonic.
Results are produced for a conventional ballasted track subject to a harmonic load of different

frequencies moving at different load speeds. From these results the effects of the load speed and
the modelling of the supports have been identified.
The load speed has a significant effect on the pinned–pinned vibration of the track. The height

(depth) of the peak (dip) at the pinned–pinned frequency decreases as the load speed increases.
Since the pinned–pinned vibration plays a vital role in the development of short-pitch rail
corrugations, the motion of wheels, which has in general been neglected in previous studies, must
be included in the research into short-pitch rail corrugations and roughness growth.
For the vertical dynamics of the track and for load frequencies less than 200Hz, the fluctuation

of the displacement amplitude of the discrete support model as the load passes a sleeper bay is
negligible. The displacement amplitude is almost identical to that from the continuous support
model and is almost independent of the load speed if it is within the range of possible train speeds.
This confirms the usefulness of the continuous support model in the study of train-induced
ground vibration. For load frequencies higher than 200Hz the displacement amplitude observed
from the moving load may change significantly within a period of variation of the load.
For load frequencies less than 250Hz in the lateral dynamics of the track, the fluctuation of the

displacement amplitude of the discrete support model as the load passes a sleeper bay is also
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negligible. However, for the lateral dynamics of the track, the continuous support model is totally
inappropriate.
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Appendix A

This appendix is given for the derivation of the differential equation of motion for the lateral
dynamics of a track. The lateral displacement of a beam is denoted by u; the rotation angle of its
cross-section due to the bending moment only by c and the torsion angle of the beam by y: The
bending moment and shear force per unit length of rail at the top end of the web are denoted by
Mh and Qh: Those at the bottom are denoted by Mf and Qf : At the top of the head, a unit moving
(at speed c) lateral harmonic load of frequency O is applied (Fig. A.1).
The differential equations of motion for the head are given by

rAh
q2uh

qt2
	 khAhG

q2uh

qx2
þ khAhG

qch

qx
¼ dðx 	 x0 	 ctÞeiOt 	 Qh; (A.1a)
Exp (iΩt)
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Fig. A.1. Forces on the rail.
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rIh
q2ch

qt2
	 EIh

q2ch

qx2
	 khAhG

quh

qx
þ khAhGch ¼ 0; (A.1b)

rIhp
q2yh

qt2
	 GJh

q2yh

qx2
¼ 	Mh þ Qh

hh

2
þ

hh

2
dðx 	 x0 	 ctÞeiOt: (A.1c)

If denoting fqðx; tÞg ¼ ðuh;ch; yh; uf ;cf ; yf Þ
T (A.2)

then Eq. (A.1) can be written as

½M�h
q2

qt2
fqðx; tÞg þ ½K�0hfqðx; tÞg þ ½K�1h

q
qx

fqðx; tÞg 	 ½K�2h

q2

qx2
fqðx; tÞg

¼

dðx 	 x0 	 ctÞeiOt 	 Qh

0

hh

2
dðx 	 x0 	 ctÞeiOt 	 Mh þ

hh

2
Qh

0

0

0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ðA:3Þ

where ½M�h; etc. are 6
 6 matrices.
Similarly for the foot,

rAf

q2uf

qt2
	 kf Af G

q2uf

qx2
þ kf Af G

qcf

qx
¼
X1

j¼	1

VjðtÞdðx 	 jlÞ 	 Qf ; (A.4a)

rIf

q2cf

qt2
	 EIf

q2cf

qx2
	 kf Af G

quf

qx
þ kf Af Gcf ¼

X1
j¼	1

TjðtÞdðx 	 jlÞ; (A.4b)

rIfp

q2yf

qt2
	 GJf

q2yf

qx2
¼ 	Mf 	 Qf

hf

2
þ
X1

j¼	1

MjðtÞ 	
hf

2
VjðtÞ

� �
dðx 	 jlÞ; (A.4c)
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where VjðtÞ; TjðtÞ and MjðtÞ are the lateral force, bending and torsional torques exerted on the rail
foot by the jth support. These equations are also written in the compact form

½M�f
q2

qt2
fqðx; tÞg þ ½K�0f fqðx; tÞg þ ½K�1f

q
qx

fqðx; tÞg 	 ½K�2f

q2

qx2
fqðx; tÞg

¼

0

0

0P1
j¼	1

VjðtÞdðx 	 jlÞ 	 Qf

P1
j¼	1

TjðtÞdðx 	 jlÞ

	Mf 	
hf

2
Qf þ

X1
j¼	1

MjðtÞ 	
hf

2
VjðtÞ

� �
dðx 	 jlÞ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

: ðA:5Þ

The differential equations of motion for the web are given by those for a single beam element
(without axial deformation):

½m�w

q2uh

qt2
	

hh

2

q2yh

qt2

q2yh

qt2

q2uf

qt2
þ

hf

2

q2yf

qt2

q2yf

qt2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ ½k�w

uh 	
hh

2
yh

yh

uf þ
hf

2
yf

yf

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

Qh

Mh

Qf

Mf

8>>><
>>>:

9>>>=
>>>;
; (A.6)

where

½m�w ¼
rbwhw

420

156 	22hw 54 13hw

	22hw 4h2
w 	13hw 	3h2

w

54 	13hw 156 22hw

13hw 	3h2
w 22hw 4h2w

2
6664

3
7775; (A.7)

½k�w ¼
EIw

h3
w

12 	6hw 	12 	6hw

	6hw 4h2w 6hw 2h2
w

	12 6hw 12 6hw

	6hw 2h2w 6hw 4h2
w

2
6664

3
7775 (A.8)
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are the mass and stiffness matrices. Eq. (A.6) can be rewritten as

½M�w
q2

qt2
fqðx; tÞg þ ½K�0wfqðx; tÞg ¼

Qh

0

Mh 	
hh

2
Qh

Qf

0

Mf þ
hf

2
Qf

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; (A.9)

where

½M�w ¼ ½R�T½m�w½R�; (A.10)

½K�0w ¼ ½R�T½k�w½R�; (A.11)

½R� ¼

1 0 	
hh

2
0 0 0

0 0 1 0 0 0

0 0 0 1 0
hf

2
0 0 0 0 0 1

2
6666664

3
7777775
: (A.12)

Addition of Eqs. (A.3), (A.5) and (A.9) gives the differential equation of the track for lateral
dynamics, i.e. Eq. (53) in which

½M� ¼ ½M�h þ ½M�f þ ½M�w (A.13)

and similar for ½K�0; ½K�1 and ½K�2:
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